
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

An Effective Undersampling

Approach to Deal with Class

Imbalance Problem in Software

Defect Prediction
by

Syed Fawad-ul-Hassan Gillani
A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Computing

Department of Computer Science

2021

www.cust.edu.pk
www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright © 2021 by Syed Fawad-ul-Hassan Gillani

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

My dissertation work is devoted to my loving Parents, My Teachers and My

Friends. I would like to pay special gratitude to my supervisor who guided me

throughout my work.

CERTIFICATE OF APPROVAL

. An Effective Undersampling Approach to Deal with Class

Imbalance Problem in Software Defect Prediction

by

Syed Fawad-ul-Hassan Gillani

(MCS173033)

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Yaser Hafeez Arid Agriculture University

(b) Internal Examiner Dr. Saima Nazir CUST, Islamabad

(c) Supervisor Dr. Aamer Nadeem CUST, Islamabad

Dr. Aamer Nadeem

Thesis Supervisor

May, 2021

Dr. Nayyer Masood Dr. Muhammad Abdul Qadir

Head Dean

Dept. of Computer Science Faculty of Computing

May, 2021 May, 2021

iv

Author’s Declaration

I, Syed Fawad-ul-Hassan Gillani hereby state that my MS thesis titled “An

Effective Undersampling Approach to Deal with Class Imbalance Prob-

lem in Software Defect Prediction” is my own work and has not been sub-

mitted previously by me for taking any degree from Capital University of Science

and Technology, Islamabad or anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Syed Fawad-ul-Hassan Gillani)

Registration No: MCS173033

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “An Effective

Undersampling Approach to Deal with Class Imbalance Problem in

Software Defect Prediction” is solely my research work with no significant

contribution from any other person. Small contribution/help wherever taken has

been duly acknowledged and that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Syed Fawad-ul-Hassan Gillani)

Registration No: MCS173033

vi

Acknowledgements

First, I thank Allah for blessing me this wonderful opportunity to pursue my MS

thesis.

I would like to thank my supervisor Dr. Aamer Nadeem, for all his encourage-

ment and support throughout this journey. Once again, I would like to thank

my supervisor, Dr. Aamer Nadeem, whose patience and relentless commitment

have rendered me a much stronger researcher. I am particularly grateful to the

members of my CSD committee for their help and valuable advice throughout this

journey

I cannot thank you sufficiently, Sir Muhammad Rizwan, for all that my have ac-

complished. You were a promoter, a friend and, most importantly, a great person,

I am grateful to you forever.

To my mother, father and brothers thank you very much for your help on this

journey. You all taught me what a real sacrifice is. Without your sincere generos-

ity, your devotion, help, inspiration and advice I would not have been here. I feel

so fortunate to have such a wonderful family. Thank you to my father, brother,

sisters and my wife for there every step of my journey. That thesis I dedicate all

of you.

(Syed Fawad-ul-Hassan Gillani)

vii

Abstract

Software testing is the process of finding faults in software by executing it. Many

software development tasks are carried out by humans, which can lead to numerous

software bugs arising over the course of development. The results of the testing

are used to find and correct faults. Software defect prediction estimates where

faults are likely to occur in source code. Therefore, in the initial stages of testing,

the prediction of software defects has become a primary concern in software en-

gineering. The results from the defect prediction can be used to optimize testing

and ultimately improve software quality. The most important ability of the soft-

ware testing process is to identify software defects and the most important thing

is reducing software cost and enhancing the overall reliability and quality of the

required software. Machine learning is used for software defect prediction to iden-

tified the defect modules. Machine learning, which concerns computer programs

learning from data, is used to build prediction models which then can be used

to classify data. In Machine Learning class imbalance problem is an important

issue. Class imbalance problem has become an important issue and many authors

research on software defects prediction to solve the class imbalance problem. In

the class imbalance problem most instances belong to one class, this class is known

as the majority class and the label of the majority class is negative. And the other

class has very few instances and this class is known as minority class and the label

of minority class is positive.

In the literature, different techniques have been proposed for class imbalance prob-

lem. These techniques have been divided into the data level, algorithm level,

and the combination of both data and algorithm level techniques. Random over-

sampling and random under-sampling are the basic sampling strategics in the

data-level approaches for class imbalance problem. Under-sampling reduces the

dataset and deletes the instances from the majority class, while over-sampling

expands the dataset and adds the duplicates and synthetic instances of minority

class in the dataset. Both sampling approaches are used for balancing the dataset,

under-sampling removes the instances from the training dataset and may also re-

move useful information the model has to learn from. Oversampling will cause

viii

an increased training dataset, due to this increased size of the training dataset

over-fitting may occur.

There are two main objectives for this thesis. First to achieve an effective under-

sampling with minimum loss of useful information. Second to address the rela-

tionship between Structured Under-Sampling and Imbalance Ratio (IR).

In this thesis, we propose a new technique known as Structured Under-sampling

(SUS). With the help of SUS, we try to address the problem of loss of information

due to under-sampling. The problem with Random Under-Sampling is that it re-

moves the instances randomly and due to randomness, loss of useful information

may occur. Many different techniques try to solve the loss of information prob-

lem. In under-sampling information is lost, but in the proposed under-sampling

technique we systematically remove instances and we delete inconsistent/noisy in-

stances, repeated / redundant instances, and most similar instances are removed

with minimum loss of information.

We used the C4.5 classifier and compared the performance of Structured Under-

sampling with other Under-sampling techniques and measure the performance

difference between sampling methods using F-Measure and ROC. We compared

the performance of the proposed method Structured Under-sampling with Tomek

Links, Random under-sampling, and Tomke Random under-sampling. The re-

sults of our investigation have shown good performance using Structured Under-

sampling as compared to other existing under-sampling techniques. Software de-

fect datasets showed the superiority of method Structured Under-sampling after

using Machine learning algorithms C4.5. Some datasets have shown comparable

performance using all under-sampling methods. Imbalance ratio affects the per-

formance of Structured Under-Sampling, when the Imbalance ratio is > 5 SUS

outperformed in all results. In future work, our effort is to improve the SUS

performance and find the best combination of SUS with any other oversampling

approach, and improve software defect prediction performance for SDP.

Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgement vi

Abstract vii

List of Figures xi

List of Tables xii

Abbreviations xiii

1 Introduction 1

1.1 Software Defect Prediction . 1

1.2 Class Imbalance Problem . 4

1.3 Sampling Approaches for CIP . 5

1.3.1 Under-Sampling Approach 6

1.3.2 Over-Sampling Approach . 6

1.4 Problem Statement . 6

1.5 Objective and Research Questions 7

1.6 Outline of Thesis . 7

2 Literature Review 9

2.1 Under-Sampling Technique . 9

2.2 Distance Function Based Data Reduction
Method . 14

2.3 Euclidean Distance Function . 16

2.4 Summary . 16

3 Proposed Approach 19

3.1 Structured Under-sampling (SUS) 20

3.2 Euclidean Distance Function . 27

3.3 Example . 27

ix

x

4 Experimental Design 36

4.1 Data Preprocessing . 37

4.2 Cross Validation . 39

4.3 C4.5 . 39

4.4 Evaluation . 40

4.5 Comparison of Results . 40

4.6 WEKA . 41

4.7 Dataset . 42

5 Results and Discussion 44

5.1 Experiment . 45

5.1.1 SUS vs. Tomek link . 45

5.1.2 SUS vs. RUS . 48

5.1.3 SUS vs. TL-RUS . 51

5.2 Discussion . 53

6 Conclusion and Future Work 57

Bibliography 61

List of Figures

3.1 SUS 1st Phase Flowchart . 20

3.2 SUS 2nd Phase Flowchart . 21

3.3 SUS 3rd Phase Flowchart . 22

4.1 Experimental Design . 37

4.2 WEKA UI . 41

5.1 SUS and Tomek link Performance 46

5.2 Overall Performance difference between SUS and Tomek link . . . 47

5.3 Overall Performance difference between SUS and RUS 49

5.4 Overall Performance difference between SUS and RUS 50

5.5 Overall Performance SUS and TL-RUS 51

5.6 Overall Performance difference between SUS and TL-RUS 52

5.7 Overall Performance difference of SUS between Tomek-Link, RUS
and TL-RUS . 54

5.8 Performance difference of SUS between Tomek-Link, RUS and TL-
RUS . 55

xi

List of Tables

1.1 Summary of Classifiers . 3

1.2 Confusion Matrix . 4

1.3 Summary of Performance Measures 4

2.1 Summary of Under-Sampling Techniques 17

3.1 Sample Dataset . 28

3.2 After First Iteration of 1st phase 29

3.3 After Second Iteration of 1st phase 29

3.4 Splited Sample Dataset After 1st phase 30

3.5 After First Iteration of 2nd phase 31

3.6 Sample Dataset After 2nd phase 32

3.7 Balanced Sample Dataset . 35

4.1 Dataset Detail . 42

4.2 Shows the Features of Dataset . 43

5.1 Performance difference of SUS and Tomek link when IR < 5 46

5.2 Performance difference of SUS and Tomek Link when IR > 5 47

5.3 Performance difference of SUS and RUS when IR < 5 49

5.4 Performance difference of SUS and RUS when IR > 5 50

5.5 performance difference between SUS and TL-RUS when IR < 5 . . 52

5.6 Performance Difference between SUS and TL-RUS when IR > 5 . . 53

xii

Abbreviations

CI Class Imbalance

CIP Class Imbalancen Problem

IDS Imbalanced Data Sets

IR Imbalance Ratio

MiC Minority Class

MjC Majority Class

ML Machine Learning

ROS Random Over-Sampling

RUS Random Under-Sampling

SDP Software Defect prediction

xiii

Chapter 1

Introduction

Software demand has grown significantly in recent past[1], however software sys-

tems do not behave as expected in many scenarios. Software testing is very impor-

tant for improving the reliability and quality of software. Improving the reliability

and quality of software is a challenging task for software engineers. The goals

of the software testing process is to identify software defects and enhancing the

overall reliability and quality of the software [2]. However, as far as resources

are concerned, software testing is a time consuming and expensive task. Software

Defect Prediction (SDP) helps in testing process and guides the testing team to

concentrate more efforts on the fault-prone modules.

The method of predicting modules that may be fault-prone in software is called

SDP. In previous research, several machine learning algorithms have been used

(also known as classifiers) for SDP [3, 4]. Decision trees, classification rules, neural

networks, and probabilistic classifiers are members of these families [3].

1.1 Software Defect Prediction

In the SDP process, machine learning models learn via previous project datasets

and predict the defects in the required software system [5]. Datasets have been

created from software repositories including defect monitoring systems, source

1

Introduction 2

code changes, data extraction, and version control systems. Datasets consist of

samples that may be modules of applications, directories, classes, functions, and

modules. When datasets are created for SDP, before SDP using preprocessing

methods such as noise detection and reduction [6], data normalization [7] the

collected datasets are cleaned. In SDP after pre-processed datasets are used to

create a machine learning model that predicts whether or not new instances contain

defects. Software metrics such as code metrics and process metrics are used in SDP.

In SDP software metrics have a very important role and these metrics are created

with software systems [8].

Software metrics can be defined as a quantitative calculation that assigns the char-

acteristics of expected instances to symbols or numbers [8]. These characteristics

or attributes characterize several features, such as software products’ reliability,

effort, complexity, and consistency. In creating an efficient software defect indica-

tor, these metrics play a key role. They can be divided into two major categories:

code metrics and process metrics [9].

Code metrics: are explicitly obtained from the source code. These metrics

measure the complexity of source code based on the assumption that complex

software components are more likely to contain bugs. Throughout the history

of software engineering, various code metrics have been used for software defect

prediction [3, 10–12].

Process metrics: are metrics based on past changes over time in the source code.

These metrics can also be derived from the Source Code Management System and

include, for example, the number of code changes and removals, the number of

different committees, and the number of lines that have been changed. Numerous

prediction studies subsequently applied this metric for SDP [3, 13–15].

In the literature, several studies have indicated that software defect predictors work

better when making use of machine learning models to learn from past datasets

[3]. Machine learning is a mathematical study that explores the creation and anal-

ysis of methods that allow computer programs to learn from data without being

Introduction 3

specifically programmed [5].

Usually, machine learning algorithms are classified as : supervised and unsuper-

vised learning [16]. Methods used in unsupervised learning learn predictors from

unlabeled data [3]. Besides that, supervised learning, consist of a collection of

data input with label information it learns prediction from labeled data. The

outputs can be real numbers in regression in supervised learning or class labels in

classification.

Supervised learning is also known as classification, as it classifies input into two

or more classes. The labeling approach has been commonly used in the literature

to classify instances of software modules as defect or defect-free. In table 1.1 we

mention some different machine learning algorithms that are use for SDP.

Table 1.1: Summary of Classifiers

Abbr Classification Algorithm Ref

LR Logistic Regression [17, 18]

NB Naive Bayes [19]

C4.5 Decision tree [13]

IBk Instance based kNN [20]

Ripper Rule based Ripper [21]

SVM Support vector machine (SMO) [22]

RF Random Forest [1, 23]

Measuring classifier performance is completed with four measures of classification

correctness. These four measures are True Positives (TP), False Positives (FP),

True Negatives (TN), and False Negatives (FN). These four measures represent

the confusion matrix as we mention in table 1.2.

These four measures within the confusion matrix define a facet of the correctness

of classification results [3]. Different performance measures are uses to evaluate

the machine learning model performance, in the table 1.3 we mention some per-

formance measures.

Introduction 4

Table 1.2: Confusion Matrix

Actual

Defective Non-Defective

Predicted defective TP FN

Predicted non-defective FN TN

Table 1.3: Summary of Performance Measures

Name Ref

Accuracy [24, 25]

False Positive rate [26]

Recall [26]

Precision [12, 24]

Balance [27]

ROC [24–26]

F-Measure [6, 12, 24, 28]

Due to the imbalance problem, the output of the machine learning model may

be biased. The imbalance problem is often considered to be a class imbalance

problem. The machine learning model focuses on one class during classification

and ignores the other class because of the problem of class imbalance [3].

1.2 Class Imbalance Problem

Class Imbalance problem (CIP) refers to imbalanced dataset (IDS). The dataset is

considered as imbalanced when there are too few instances of one class this class

is known as minority class (MiC) and the label of MiC has positive. The other

class has many more instances this class is known as Majority Class (MjC) and

the label of MjC is negative. Many real-world datasets face the CIP, and due to

the occurrence of CIP, the output of the classifier is biased. CIP has been existing

Introduction 5

in many real-world datasets such as text analysis, detection of fraud, identification

of oil leaks, medical diagnosis, credit card account services, and software defect

prediction, etc. [3, 29].

For example, during the classification when one class (MiC) has few instances and

the other class has much more instances (MjC) the machine learning model ignores

the MiC and focuses on MjC. When the classifier can not identify the occurrence

of unique instances (MiC) due to this result can be more serious consequences in

real-world datasets IDS as we mention above.

With the SDP scenario, misinterpretation of faulty and non-faulty instances leads

to very serious software risks. In CIP, Imbalance Ratio (IR) is generally used as a

measure to compute data imbalance.

As shown in Eq. 1.1, IR is a well-known term in IDS. In software defect prediction,

IR is defined as the ratio of non-defective (MjC) samples in the number of defective

(MiC) [3]. In Eq. 1.1, IR represents the Imbalance Ratio, MjC and MiC represent

majority, and minority class instances respectively.

IR =
MjC

MiC
(1.1)

In the literature, many sampling techniques have been proposed to deal with CIP.

These approaches are divided into two as groups data level and the algorithm level

approaches [3].

1.3 Sampling Approaches for CIP

Random over-sampling (ROS) and Random under-sampling (RUS) are the basic

data level sampling technique. RUS reduces the dataset and randomly deletes the

instances of MjC while ROS increases the dataset and randomly adds the duplicate

instances of MiC. Under-sampling discards data from the dataset and in reduced

datasets useful information can be lost. Over-sampling increases the dataset and

increased training dataset when used as training set may cause over-fitting.

Introduction 6

1.3.1 Under-Sampling Approach

Under-sampling (US) is a simple data-level approach for sampling training dataset

[30]. Under-sampling eliminates the MjC instances from the training dataset until

the IR reaches specified level between the MiC and MjC. According to the litera-

ture, the issues with RUS it cannot manage which data sample is removed from the

MjC. Particularly, very important data sample about the decision boundary be-

tween the MiC and MjC may be eliminated and useful information may be lost. In

literature, different under-sampling techniques have been proposed such as Con-

densed Nearest Neighbor (CNN) [31], One-Sided selection (OSS)[32], DBSCAN

Under-sampling [33], NearMiss Under-sampling [34].

1.3.2 Over-Sampling Approach

Over-sampling (OS) is also a data-level approach in this method the size of MiC is

increased with random selection or with adaptive approach [30]. This method has

several advantages: low computational complexity, no distortion to MiC distribu-

tions, and natural generalization to the multi-class case. However, the method

has a drawback, it gets many instances with the same points, and also causes

over-fitting. In literature, different over-sampling approaches have been proposed

such as SMOTE [35], MSMOTE [36], Borderline-SMOTE [37], ADASYN [30].

1.4 Problem Statement

For the challenge of class imbalance problem, researchers have applied different

data preprocessing methods. The under-sampling method is one of them to over

the class imbalance problem.

In chapter 2, we discuss different under-sampling techniques that are used to

balance datasets. Most of the techniques try to manage the boundary between

MjC and MiC by expanding boundaries to the majority and giving more room

to the minority. The main challenging task while performing under-sampling is

Introduction 7

to select the decision boundary between MiC and MjC because it risks losing

sample points that contain valuable information for the classification. During

under-sampling process useful information may be lost. To overcome challenge,

we propose a new under-sampling technique as discussed in chapter 3.

1.5 Objective and Research Questions

There are two main objectives for this thesis. First to achieve an effective under-

sampling with minimum loss of useful information. Second to address the rela-

tionship between SUS and Imbalance Ratio (IR), and find out which IR impacts

the performance of SUS.

RQ1: How can we achieve an effective under-sampling with minimum loss of

information as compared to the other existing under-sampling approaches?

RQ2: Does the proposed under-sampling approach improve the performance over

existing under-sampling approaches?

RQ3: How does imbalance ratio affect the performance of proposed under-sampling

approaches?

1.6 Outline of Thesis

The rest of this thesis is structured as follows.

Chapter2

This chapter presents related work about under-sampling techniques. We discuss

and explain existing the under-sampling approaches.

Chapter 3

This chapter presents the proposed approach. It includes a diagram, and explains

the three different phases of the proposed approach.

Introduction 8

Chapter 4

This chapter describes experiments followed by analysis, evaluation and the design

of evaluation framework, and also discusses the tool that is used in experiments.

Chapter 5

This chapter contains a description of results, analysis and also presents perfor-

mance difference between proposed sampling method SUS and other sampling

methods.

Chapter 6

This chapter discusses conclusion and future work and answers the research ques-

tions, as well as provides a possible direction for future research.

Chapter 2

Literature Review

In the literature, many solutions have been proposed for CIP. Proposed solutions

are divided into two groups data and algorithm level solutions. Hybrid solutions

is the combination of data and algorithm level solutions. In section 1.3 we have

mention different Under-Sesampling (US) and Over-Sampling (OS) methods. In

section 2.1, we have discussed only under-sampling methods.

As we mentioned in section 1.3 data-level solutions are divided into two groups

US and OS. Under-sampling is an important resampling method [30]. In the liter-

ature several under-resampling methods are applied to balance class distribution.

Although US and OS have shown good performance, OS still faces the over-fitting

problem and the US still faces the problem of information loss. According to the

literature, one of the main issues with the US is that we cannot manage which

data simples are removed from the training dataset due to this reason, useful in-

formation can be lost [16]. Section 2.1, discusses the under-sampling approaches

and also discusses some sampling approaches used to reduce the noise or outliers.

2.1 Under-Sampling Technique

Laurikkala proposed a new method Neighborhood Cleaning rule (NCL) in 2001

[38]. The Neighborhood Cleaning Rule algorithm was created for the binary case,

9

Literature Review 10

it cleans border and noise by deleting wrong points among 3-nearest neighbors.

This algorithm seems simple but performs very well. The proposed Neighborhood

Cleaning Rule is outperforms RUS and OOS methods in experiments with ten

data sets. All reduction methods improve the identification of small classes (20-30

percent), but the differences were insignificant. Machine learning model C4.5 re-

sults suggest that Neighborhood Cleaning Rule is a useful method for improving

the modeling of difficult small classes, and for building classifiers to identify small

classes from the real-world data.

Mani and Zhang proposed a new method NearMiss Under-sampling in 2003 [34].

NearMiss Under-sampling is a binary under-sampling algorithm that uses average

distances between a given point and also the nearest or farthest points of an

opposite class. There are four variants of the NearMiss approach.

In NearMiss-1, need to pick the MjC points up to a given percentage of the MjC

size, which is close to some of the MiC points. NearMiss-1 suggests picking out

MjC points with the smallest average distance to the three nearest points from the

MiC. In NearMiss-2, need to pick the MjC points up to a given percentage of the

MjC size, which is close to all points of the MiC. NearMiss-2 means to select the

MjC points with the smallest average distance to the three farthest points from

the MiC. In NearMiss-3 for each minor class point, and pick a given number of

the nearest MjC points.In most distant negative points (NearMiss-4) need to pick

the major class points (up to a given percentage of total) with the largest average

distance to the three closest points of the minor class.

Liu et al. proposed two algorithms to solve majority-class issue in 2008 [39]. This

paper proposes two methods, one straightforward method is to sample several

subsets independently from N (the majority class), use these subsets to train

classifiers separately, and combine the trained classifiers. Another method is to

use trained classifiers to guide the sampling process for subsequent classes.The

experiment result shows the good performance with such datasets car, ionosphere,

letter, phoneme, sat, and wdbc, Ada achieves very high AUC values, which are all

greater than 0.95.

Literature Review 11

Yen and Lee proposed Cluster-based under-sampling in 2009 [40]. In the proposed

approach, they first divided all the training dataset samples into several clusters.

The basic principle is various clusters have many samples including MjC and MiC

samples, and each cluster tends to have distinct characteristics. When a cluster

contains more groups of MjC and fewer MiC Samples, they should act like sam-

ples of the MjC. On the other hand, if a cluster contains more members of MiC,

it does not have the property of samples of the MjC but performs more like MiC

samples. Cluster-based under-sampling picks an appropriate number of majority

level samples of each cluster by a ratio from MjC groups to minority percentages

in-cluster class samples. Cluster-based under-sampling has good results on two

real applications that include the issue of imbalanced class distribution and it re-

quires less time than other methods for choosing the training samples.

Tahir et al. proposed inverse random under-sampling (IRUS) in 2012 [41]. In this

paper, a novel IRUS approach is introduced for CIP. In IRUS the cardinalities of

the MjC and MiC are reversed. The new methodology is utilized in 22 UCI data

sets. Experimental findings indicate a substantial performance improvement rela-

tive to other current methods of teaching and learning with an imbalanced class.

This paper presents results for multi-label classification. Classification of multi-

label IDS is a challenging research issue in many modern applications including

SDP. This paper claims that this limit has the potential to delineate the MjC more

efficiently than traditional learning solutions. T-tests (level of significance 0.05)

were performed using AUC, F1, and G-mean showing WIN – TIE – LOSE, respec-

tively. Together with other approaches like the state-of-the-art EasyEnsemble, the

paired t-test shows that IRUS is superior in most data sets.

Ng et al. proposed Diversified Sensitivity-Based Under-Sampling (DSUS) method

in 2014 [42]. DSUS selects useful samples and avoids selecting samples around

the decision boundary. The DSUS outperformed other methods with a statistical

significance. The DSUS provided the best performance in terms of all AUC, FM,

and G-Mean. In these datasets Pima, breast, post-op, CMC, newthyroid, and

optdigits, the DSUS does the best for the FM, except the Haberman dataset.

Literature Review 12

Beckmann et al. proposed KNN under-sampling (KNN-Und) algorithm in 2015

[43]. This work is focused on the data adjusting algorithms and a proposal of

a KNN under-sampling (KNN-Und) algorithm. The KNN- Und is a very simple

algorithm, and basically, it uses the neighbor count to remove instances from the

MjC. The KNN-Und algorithm was developed as a preprocessing plugin in the

WEKA platform. It can also be used to solve the CIP, commonly associated with

IDS. In highly skewed IDS, the algorithm can be used with some other sampling

method to improve the results. In this paper, AUC was used as a performance

measure and C4.5 as machine learning algorithm. The experiments were performed

on 19 datasets. The KNN-Und outperformed in 11 of 15 datasets.

Liu et al. proposed a novel threshold-based clustering algorithm (NTC) as a

two-stage data preprocessing approach in 2015 [44]. The main contribution of

the paper is a novel two-stage data preprocessing approach which performs both

feature selection and instance reduction in sequence. This paper used three clas-

sification models which are commonly used in SDP and AUC was used as a per-

formance measure. This paper also uses the Friedman test to determine whether

the performance measures used in the experiments are sufficient or not. This

paper uses random under-sampling in the sample reduction stage to achieve the

balance between faulty and non-faulty instances. According to this paper exper-

iments, datasets were selected from software projects of Eclipse and NASA. The

proposed approach was compared with other approaches to certain classical base-

line approaches and further researched the contributing variables in the approach.

The final results indicate the proposed method’s efficacy and include a guide for

achieving cost-effective preprocessing of data by using a two-stage approach.

Yang et al. proposed Under-Sampling Conditional Field (UCRF) in 2015 [45].

In this paper, studies have been conducted on under-sampling, and CRF Model.

UCRF has two stages, in the first stage it handles CIP that is the key reason

accounting for the poor performance of certain machine learning methods.

In this paper authors propose to balance the training dataset by mean-shift clus-

tering approach. The mean-shift clustering approach removes the MjC samples

to achieve the required IR in the training dataset. In the second stage, UCRF

Literature Review 13

adopts the CRF model which has the ability to handle complex features without

any change in training procedure in the above-balanced data set. The CRF model

can be easily applied to recognition because it is a modeling technique for state

and mark sequences. According to the results of this paper, UCRF outperforms

all other approaches.

Chen et al. proposed a noise-filtered under-sampling system, called the EE-IPF in

2016 [46]. This article discusses a noise filtering strategy for imbalanced classifica-

tion in the sense of an under-sampling algorithm. The author borrows the active

Partitioning Filter to boost EasyEnsemble(EE) efficiency. To reduce the risk of

failure reducing a minority class instance, authors suggest upon under-sampling

takes multiple IPF filters.

Kang et al. proposed Noise-filter Under-Sampling Scheme (NUS) in 2016 [7]. This

paper combines noise filter with methods of under-sampling and discusses multiple

experiments to check the NUS approach by using ML Repository comparison data

sets from the University of California Irvine (UCI). This paper has utilized well-

known strategies of RUS, US, RUS Boost (RUSB), Under-sampling + Adaboost

(UA), UnderBagging (UB). The proposed context in which a K-nearest cousin

(KNN)-dependent noise filter, named KF for short, is applied, and the efficiency

metric used to test ML algorithm output with AUC, F-measure, and G-mean is

focused on that.

Elhassan and Aljurf proposed Tomek-Link combined with Random Under-Sampling

(TL-RUS) in 2016 [47]. Tomek Link algorithm was used in the preprocessing phase

as a method of data cleaning to remove noise. After filtering the IDS it uses other

under-sampling methods on the filtered dataset. In this paper, Tomek Link is com-

bined with other sampling methods such as RUS, ROS, and SMOTE to maintain

a balanced class distribution in IDS. The classification uses several ML algorithms

such as ANN, RF, and LR. After reducing noise from IDS, it applies different re-

sampling methods including RUS, ROS, and SMOTE. SMOTE and RUS showed

good performance among various resampling methods. Under-sampling techniques

showed superior efficiency compared with other sampling techniques for all classi-

fiers tested.

Literature Review 14

Sowah et al. proposed Cluster Under-Sampling Technique (CUST) in 2016 [48].

This paper presents a new under-sampling technique referred to as CUST, that

has the capability of raising the performance of classification algorithms by learn-

ing from imbalanced datasets. The performance of CUST was evaluated by using

sixteen class imbalanced datasets before building classification models using the

C4.5 decision tree algorithm. In CUST experiment C4.5 classification algorithm

was used and two performance measures AUC and G-mean were used. The exper-

imental results showed that CUST improved the performance result as compared

to SMOTE, RUS, ROS, OSS, and NONE.

2.2 Distance Function Based Data Reduction

Method

Condensed Nearest Neighbor (CNN) Rule is formed for the binary case [31]. Be-

ginning with original dataset S, tend to produce associate initial under-sampled

data set C with only the MiC and one random purpose from the MjC. Then classify

S by 1-nearest neighbor classifier using the points in C and move all misclassified

examples of S into C. The complexity of this algorithm is O(m.n) where m is

the size of the MiC and n is the size of the MjC. This algorithm has a drawback

created by the random initialization, where generally a selected point appears on

the border of the major class, and deleted points unexpectedly distort the data

distribution.

DBSCAN Under-sampling is a clustering-based under-sampling algorithm [33].

DBSCAN clustering is fast as O(n) and it detects outliers that can be used for

the border and noise-cleaning. The radius of the neighborhood parameter can

be found as a quintile of within-class distances. This needs to compute and sort

distances of the class points which is costly, so for the big size major classes, it is

possible to sample a small portion of instances for this task.

One-Sided selection (OSS) under-sampling is a combination of Condensed Nearest

Neighbor Rule in the first stage and Tomek links in the second stage [32]. Tomek

Literature Review 15

links are used as a resampling tool to exclude instances of majority class noise to

borderline. Borderline instances may be deemed ’unsafe’, because a slight amount

of noise may cause them to fall on the wrong side of the decision boundary. The

US-CNN seeks to exclude from the plurality class cases which are far from the

boundaries of the decision. The remaining instances, i.e. ”free” instances of a

majority class, and all examples of minority groups are used for learning.

In literature, many different approaches have been proposed that use distance

function to compute the similarity between the instances, such as Tomek links

[49], Condensed Nearest Neighbor Rule [31], and One-Sided Under-Sampling [32],

Tomek Random Under-sampling [47].

Data cleaning methods are used for Under-sampling. The main goal of these

methods is to identify possible noisy examples or overlapping regions and then

decide on the removal of examples. One of those methods uses Tomek links [49],

which consists of points that are each other’s closest neighbors but do not share

the same class label. This method allows for two options: only remove Tomek

links examples belonging to the MjC or eliminate Tomek links examples of both

classes.

The notion of the Condensed NearestNeighbour Rule (CNN) was also applied to

perform undersampling [40]. CNN is used to find a subset of examples consistent

with the training set, that is, a subset that correctly classifies the training examples

using a 1-nearest-neighbor. The CNN and Tomek links methods were combined

in a strategy called One-SidedSelection (OSS).

In literature, distance function-based approaches have been presented as under-

sampling methods as we mentioned in the above section. But according to Lemaitre

et al. [50], all approaches used for data cleaning methods do not achieve specific

IR. According to the literature, the Euclidean distance function is frequently used

for data cleaning.

In table 2.1 we have presented the summary of sampling approaches. According to

our best knowledge, these techniques show good performance in a specified scenario

as mentioned in table 2.1. In past, some researchers used distance function as a

Literature Review 16

data reduction method, data filter method, and noise filter. In the next section

2.2, we discuss existing approaches that have used distance function for under-

sampling.

2.3 Euclidean Distance Function

Danielsson has proposed Euclidean Distance Function (EDF) [51]. The EDF is

one of the most commonly known distance function and its has used in previous

methods. The Euclidean distance function has been used in the previous under-

sampling techniques as a distance measure.

The Euclidean distance formula is used to calculate the distance between two data

points as shown in Eq. 2.1.

d (x, y) =

√√√√ n∑
i=1

(xi− yi)2 (2.1)

2.4 Summary

CIP affect the ML algorithms performance, in addition to the CIP, there are other

well-known problems of data quality such as inconsistent/noisy instances, repeated

/ redundant instances, and outliers that can adversely impact the performance of

classification algorithms where large numbers are present in the training results

[52].

Many authors have been proposed many solutions to deal with the CIP for SDP.

In table 2.1, we summarize the existing sampling approaches. According to table

2.1, many techniques use clustering to address the CIP in IDS [40, 42, 44, 48].The

central issue in clustering techniques is that these are dependent on the number of

clusters and the clustering method is dependent on the optimal number of clusters

and the quality of clusters.

L
iteratu

re
R

eview
17

Table 2.1: Summary of Under-Sampling Techniques

Year/

article

Proposed

Technique

Comparison with Used Classifier Datasets

used

Datasets Name Performance

Measures

Results

2016 [48] (CUST) RUS, SMOTE, OSS, and Cluster-

Based Under-sampling.

C4.5 16 CM1, KC1, KC3, MC1, MC2, MW1, PC1,

PC2,

ROC, G-mean HSD test on the mean performance of the classification al-

gorithms at Alpha=0.05 showed that CUST statistically per-

formed better.

2016 [7] Noise-filtered

Under-

sampling

Scheme

(NUS),

(UA, RUSB, UB, or EE) Ada-Boost 16 Pima, poker, wine-red, balance, wilt, page-

block

AUC, F-measure

and G-mean

X-KFs shows that the EE-F works the highest

2016 [46] EE-IPF SMOTE-IPF, SMOTE, EE Ada-Boost 11 Cmc, wdbc, wpbc, latter, housing, pima,

balance

AUC, F-measure,

and G-mean

The corresponding EE-IPF outperforms the EE and SMOTE-

IPF.

2016 [47] T-RUS RUS, ROS, SMOTE, TLink/RUS,

TLink/ROS and TLink/SMOTE

SVM, ANN, RF,

and LR.

223 The data set contains 223 families with a

mean number of siblings equal to 3 siblings

per family.

F-statistic, G-

mean, sensitivity

and weighted

accuracy

Performance measures such as F-statistic,

2015 [45] UCRF RCRF SVM and neural

network

11 CM1, KC1, KC3, MC1, MC2, MW1, PC1,

PC2,

PD, PN, G-mean UCRF is almost 4% better than that of RCRF.

2015 [44] NTC ROS, RUS NB, C4.5, and

IB1

13 CM1, KC1, KC3, MC2, MW1, PC1, PC2 AUC RUS performs better than other instance sampling techniques,

such as ROS for software fault prediction. The proposed algo-

rithm NTC can be further improved software fault prediction.

2015 [43] KNN-Und RUS, SMOTE, ENN, ECL C4.5 33 GlassBWNFP,EcoliCP-IM, Pima, Haber-

mann, New-Thyroid

AUC and G-

Mean.

KNN-Und outperformed in 11 of 15 datasets as compared with

other approaches.

2014 [42] DSUS RUS SVM 14 pima, breast, post op, cmc, newthyroid, and

optdigits

AUC, F1, and G-

Mean.

In 153 out of 252 (60.71%) experiments, the DSUS outperforms

other methods with a statistical significance

2012 [41] IRUS RUS, ROS, SMOTE C4.5 22 WPC,Pima, Breast-cancer, Glass, Hepatitis F1, G-mean,

AUC

T-test tests (level of significance 0.05) use AUC, F1, and G-

mean showing WIN – TIE – LOSE, respectively. Together

with other approaches like state-of-the-art EasyEnsemble, the

paired t-test shows that IRUS is superior in most data sets

2009 [40] Cluster-

based under-

sampling

NearMiss-2, SBCNM-1, SBCNM-2,

SBCNM-3, SBCMD, and SBCMF

artificial neural

network, k-means

clustering algo-

rithm

4 DS4E10DN, DS4E10D20, DSiEjDk,

DSiEjDN

precision , recall

and F-measure

Classification on the DS4E10DN dataset shows the best result

when IR is 1:1, and the F-measures are above 80%.

2008 [39] Balance Cas-

cade ,

With 15 techniques Ada-Boost 16 Car, cmc, wpbc, wdbc, pima ROC ,F-measure

and G-mean

Car, ionosphere, letter, phoneme, sat, and wdbc, Ada achieves

very high AUC values, which are all greater than 0.95.

Literature Review 18

In IDS, MiC instances may overlap the MjC instances and these data samples may

affect the classification performance. According to Shepperd et al., inconsistent

instances have an impact on classification performance [52]. In section, 2.1 discuss

under-sampling methods that minimize noise or inconsistency [7, 46, 47]. In CIP

when noisy data are used for SDP, it has a bad affect on classifier performance.

Typically the noisy data is correlated with outliers. Outliers may arise as a result

of measuring differences in datasets, or perhaps as a consequence of experimental

error. Noise filtering, as reported by [52], has also been reported as an efficient

way of removing noise in a dataset.

In this thesis, we propose a new under-sampling technique called Structured

Under-sampling (SUS). Our proposed approach is based on the EDF. The key

difference between SUS and other under-sampling methods [31, 32, 34, 47, 49] is

the proposed SUS removes 3 different kinds of instances from MjC. Our proposed

SUS is not dependent on any clustering algorithm. In the next chapter, we dis-

cuss the proposed SUS methodology and explain the working of the proposed SUS

technique.

Chapter 3

Proposed Approach

In this chapter, we have presented our proposed methodology known as Structured

Under-sampling (SUS). In this chapter, we explain the working of the proposed

technique. We also explain the flowchart of the proposed methodology.

Structured Under-sampling identifies inconsistent samples between MiC and MjC

in IDS. After identification of inconsistent samples, we remove these samples from

MjC. Since SUS is an under-sampling technique, we remove only MjC instances.

According to Shepperd et al, inconsistent instances impact classification perfor-

mance [52]. In the proposed approach we try to minimize the problem of infor-

mation loss during under-sampling and also handle the problem of inconsistent

instances.

The SDP research community is continuously proposing and using an under-

sampling technique to address CIP. However, existing approaches are suffered

from either removing more informative instances like a diverse instance or keeping

less informative instances like inconsistent and duplicate instances.

This reflects the sub-optimum performance of ML models. Therefore, there is a

need to propose an under-sampling technique that balances the imbalance dataset

by identifying and dropping the least informative instances.

In this chapter, we explain the proposed approach into three different phases as

we shows in figure 3.1, 3.2 and 3.3.

19

Research Methodology and Proposed Approach 20

3.1 Structured Under-sampling (SUS)

In the first phase, identify the inconsistent samples. Two samples are inconsistent

if they are identical but have different labels. These kind of instances affect the

classification process. So in SUS, first we handle inconsistent instances problem

and remove all inconsistent instances from MjC.

Figure 3.1: SUS 1st Phase Flowchart

Research Methodology and Proposed Approach 21

In the second phase, we identify the duplicate instances in IDS. Duplicate instances

are two different samples having same information with same label, these samples

also affect the classification performance. So in SUS, the second phase removes all

duplicate instances from MjC.

Figure 3.2: SUS 2nd Phase Flowchart

Research Methodology and Proposed Approach 22

Figure 3.3: SUS 3rd Phase Flowchart

In the third phase, SUS removes least diverse instances from MjC based on the

EDF. With help of EDF, SUS computes the similarity distance between all pairs

of MjC instances and selects one pair with least similarity value.

Research Methodology and Proposed Approach 23

When we selects one pair of two instances with lest similarity on the based of

EDF value, then computes the diversity of selected pair with all other instances of

MjC. When computes the diversity, then removes the least diverse instance from

selected pair.

There is an important difference between the first and second phases. In the first

phases, under-sampling is done between the classes but in second phase only MjC

and computes the similarity within the MjC instances.

lets suppose d(A,B) a selected pair of two instances with lest similarity value.

With help of EDF, we computes the similarity of instance A with all other in-

stances and add the all pairs similarity values as we shows in Eq. 3.1. In Eq. 3.1,

’A’ show the instance A of selected pair and ′X ′
i show the all other instances of

MjC. We also computes the similarity of instance B with all other of MjC and

add the all pairs similarity values as we shows in Eq. 3.2. In Eq. 3.2, ’B’ show

the instance B of selected pair and ′X ′
i show the all other instances of MjC.

When we complete the process for selected pair, then we checked the diversity of

instance A and B. If (A,X) < (B,X) then removed instance A, If (B,X) < (A,X)

then removed instance B.

According to the figure 3.3 when a instance is removes from MjC then we checked

the IR, if we not achieved the required IR then SUS again repeat third phase until

SUS reached at required IR. In our experiment, SUS stopping criteria is 1:1 IR.

(A,X) =
n∑

i=1

(A−Xi) (3.1)

(B,X) =
n∑

i=1

(B −Xi) (3.2)

In figure 3.1, we shows the flowchart of the SUS 1st phase. In figure 3.2 we shows

the flowchart of the SUS 2nd phase, and in figure 3.3 we shows the flowchart of

the SUS 3rd phase. Following are the detail explanation of phases of Structured

Under-sampling (SUS).

Research Methodology and Proposed Approach 24

• 1st Phase

Step 1: An imbalanced dataset is initially loaded.

Step 2: When IDS loads, SUS read MiC and MjC instances then identify

the inconsistent instances from IDS.

Step 3: If the inconsistent instance is identify, then we removes the instances

from MjC. Else, the inconsistent instance is not identified then SUS moves

in the 2nd phase as we shows in 3.2.

Step 4: When we removes one inconsistent instance from MjC instance then

cheeked the IR.

Step 5: If we achieved the required IR, then we stopped the processing of

SUS and end the SUS process.

Step 6: If we not achieve the required IR, then we goes on step 2.

Step 7: We repeats the step 2 to 6 until we removes all inconsistent instances

from MjC.

• 2nd Phase

Step 1; We split the loaded dataset into two segments of MiC and MjC

instances.

Step 2: WE read only the MjC instances.

Step 3: We apply EDF on MjC, with help of EDF we computes the simi-

larity of all pairs of MjC as shows in figure 3.2.

Step 4: On the based of EDF value we identify the duplicate instances from

MjC.

Step 5: If the result of decision box similarity value = 0 is YES then

moves into the second phase. Else, the result of decision box similarity

value = 0 is NO then we goes on 3rd phase.

Step 6: When decision box similarity value = 0, then we selects a pair

of two duplicate instances on the based of EDF value.

Research Methodology and Proposed Approach 25

Step 7: When we identify a pair of duplicate instances from MjC, then we

removes one duplicate instance from the selected pair.

Step 8: When we removes one duplicate instance from MjC , then we

combine the MjC and MiC insatances .

Step 9: When we combine the MjC and MiC instances, then checked IR.

Step 10: If we achieve the require IR, then we stop the process. Else we

move on next step.

Step 11: If we not achieve the required IR, then repeats step 1 to step 10.

• 3rd Phase

Step 1: We read the MjC instances.

Step 2: We apply EDF on MjC instances.

Step 3: With help of EDF, we Computes similarity between all pairs of

MjC instances.

Step 4: On the based of EDF value, we identify a pair of two instances with

least similarity.

Step 5: When we identify a pair with least similarity value, then select this

pair and move on next step.

Step 6: On the based of EDF value, when we selects a pair with least

similarity then checked the diversity between selected pair.

Step 7: We computes the diversity of selected pair with all other instances

of MjC.

Step 8: Let’s suppose d(A,B) a selected pair with least similarity value as

we shows in figure in 3.3.

Step 9: For Instance A: d(A,X) =
∑n

i=1 (A−Xi).

In step 9, A show the value of instance A of selected pair, and Xi show all

other instances of MjC.

Research Methodology and Proposed Approach 26

Step 10: With the help of EDF, we computes the similarity of instance A

with all other instances of MjC as we shows in Eq. 3.1 and figure 3.3.

Step 11: We compute the similarity, then we add the all similarity value of

all pairs of MjC as we shows in step 9.

Step 12: For Instance B: d(B,X) =
∑n

i=1 (B −Xi).

In step 12, B show the value of instance B of selected pair, and Xi show all

other instances of MjC.

Step 13: With the help of EDF, we computes the similarity of instance B

with all other instances of MjC as we shows in Eq. 3.2 and figure 3.3.

Step 14: We compute the similarity, then we add the all similarity value of

all pairs of MjC as we shows in step 12.

Step 15: When we complete the process for selected pair, then we have two

different for d(A,X) and d(B,X).

Step 16: On the based of d(A,X) and d(B,X) value, we identify the diver

instance.

Step 17: If d(A,X) < d(B,X), then we instance A from selected pair. Else

move on next step.

Step 18: If d(B,X) < d(A,X), then we instance B from selected pair.

Step 19: When we removes least diver instance from MjC, the we save the

least similarity distance at the current state and move on next step.

Step 20: Now we combine MjC and MiC.

Step 21: checked the IR.

Step 22: If IR = 1:1, we go on step 26. Else we go on next step.

Step 23: If we not achieve the required IR, then move on next step.

Step 24: We split the dataset into two segments MjC and MiC instances.

Step 25: We repeats the step 1 to step 24.

Step 26: End the process.

Research Methodology and Proposed Approach 27

3.2 Euclidean Distance Function

As we discuss in chapter 2, many previous techniques use EDF for data cleaning

and also used for under-sampling. In our proposed approach SUS we use EDF for

under-sampling and we removes samples from MjC in systematic way. In Eq. 3.3,

we shows how to compute the similarity of MjC instances.

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2) + + (pn − qn)2 (3.3)

According to Eq. 3.3, p and q shows as two instances of dataset and we compute

the similarity between these two instances samples. According to Eq. 3.3 p1 and

q1, we shows the first feature value of instance p1 and q1, p2 and q2 shows the feature

value of second feature, and pn and qn shows the value pf last feature. According

to the Eq. 2.1 and Eq. 3.3, with help of EDF we compute the similarity between

the instances and we performed the under-sampling in systematic way and we try

to minimize the problem of loss of information.

3.3 Example

In sample dataset table 3.1, we shows some instances of MjC and MiC. According

to sample dataset table 3.1, total number of instances is 11 and MjC have 8

instances and MiC have 3 instances, IR between MjC and MiC is 2.67. With the

help of sample dataset table 3.1, we explain the working of SUS and we removes

three kind of instances from MjC.

According to SUS working as shown in figure 3.1, first we identify inconsistent

instances and we removes them. According to figure 3.2, we identify duplicate

instances and we removes them. According to figure 3.3 we identify the lest diverse

instances and we removes them. According to the figures 3.1, 3.2 and 3.3, we

checked IR, when a single instance remove from MjC. With the help of EDF, we

have done under-sampling as we shows in Eq. 3.3 and Eq. 2.1.

Research Methodology and Proposed Approach 28

Table 3.1: Sample Dataset

Instance NO. Features A Features B Features C Label

1 3 2 1 YES

2 3 3 2 NO

3 3 2 3 NO

4 2 3 4 NO

5 2 1 1 NO

6 2 1 1 NO

7 3 2 3 NO

8 3 2 1 NO

9 3 3 3 YES

10 3 3 2 YES

11 5 3 4 NO

1st Phase

In first phase, we identify the inconsistent instances. According to sample dataset

table 3.1, we read both classes MjC and MiC instances.

As we see in sample dataset table 3.1 instance No. 1 and 8 have same information

with two different labels, now we removes instance No. 8 from MjC. According

to 3.1, when we identify a inconsistent instance then we removes this inconsistent

instance from MjC. In 1st phase of SUS, we removes only inconsistent instance.

According to the figure 3.1, when we removes inconsistent instance from MjC,

then checked the IR. If SUS not achieved the required IR, so SUS again read the

MjC and MiC instances and find an other inconsistent instances. As we can see

in sample dataset table 3.2, one instance is removed from sample dataset table

3.1, now SUS again read the MjC and MiC instance and identify the an other

inconsistent instance from sample dataset table 3.2.

According to sample dataset table 3.2 instance No. 2 and 9 have same feature

value with two different labels. Now we removes instance No. 2 from MjC and

Research Methodology and Proposed Approach 29

again checked IR as we shows in figure 3.1.

According to sample dataset table 3.3, two inconsistent instance are removes from

MjC. When we removes all inconsistent instance from MjC, then we move on 2nd

Phase as shows in figure 3.1.

Table 3.2: After First Iteration of 1st phase

Instance NO. Features A Features B Features C Label

1 3 2 1 YES

2 3 3 2 NO

3 3 2 3 NO

4 2 3 4 NO

5 2 1 1 NO

6 2 1 1 NO

7 3 2 3 NO

8 3 3 3 YES

9 3 3 2 YES

10 5 3 4 NO

Table 3.3: After Second Iteration of 1st phase

Instance NO. Features A Features B Features C Label

1 3 2 1 YES

2 3 2 3 NO

3 2 3 4 NO

4 2 1 1 NO

5 2 1 1 NO

6 3 2 3 NO

7 3 3 3 YES

8 3 3 2 YES

9 5 3 4 NO

Research Methodology and Proposed Approach 30

2nd Phase

When first phase is completed then SUS goes into the second phase, in second

phase, we identify the duplicate instances. We split Sample dataset into two parts

MjC and MiC before identify the duplicate instances as we shows in figure 3.2. As

we seen in sample datasets table 3.4, samples datasets oder is change its mean we

split samples dataset into two parts.

Table 3.4: Splited Sample Dataset After 1st phase

Instance NO. Features A Features B Features C Label

1 3 2 1 YES

2 3 3 2 YES

3 3 3 3 YES

- - - - -

1 3 2 3 NO

2 2 3 4 NO

3 2 1 1 NO

4 2 1 1 NO

5 3 2 3 NO

6 5 3 4 NO

In second phase we identify all duplicate instances from MjC. With the help of

EDF we identify duplicate between MjC instances, according to the figure 3.2

when EDF value is ”Zero” it’s mean two instances have same information. Now

we find similarity between MjC instances with help of EDF.

d(1, 2) =
√

(3 − 2)2 + (2 − 3)2 + (3 − 4)2 = 1.732050 (3.4)

d(1, 3) =
√

(3 − 2)2 + (2 − 1)2 + (3 − 1)2 = 2.449489 (3.5)

d(1, 4) =
√

(3 − 2)2 + (2 − 1)2 + (3 − 1)2 = 2.449489 (3.6)

Research Methodology and Proposed Approach 31

d(1, 5) =
√

(3 − 2)2 + (2 − 2)2 + (3 − 3)2 = 0 (3.7)

According to the Eq. 3.4, 3.5, 3.6 and 3.7, all these pairs shows the similarity

value between MjC instance. According to the Eq. 3.7, pair d(1,5) output is zero.

Table 3.5: After First Iteration of 2nd phase

Instance NO. Features A Features B Features C Label

1 3 2 1 YES

2 3 3 2 YES

3 3 3 3 YES

- - - - -

1 2 3 4 NO

2 2 1 1 NO

3 2 1 1 NO

4 3 2 3 NO

5 5 3 4 NO

When duplicate instances is identify in MjC, then we removed this duplicate in-

stance from MjC and checked IR as we shows in figure 3.2. If we not achieved the

required IR then again find the an other duplicate instance.

According to sample dataset table 3.5, one duplicate instance is removed from

MjC, now SUS Checked IR and SUS again apply the EDF of MjC instance and

find an other duplicate instance from MjC as shown in figure 3.2.

d(1, 2) =
√

(2 − 2)2 + (3 − 1)2 + (4 − 1)2 = 3.605551 (3.8)

d(1, 3) =
√

(2 − 2)2 + (3 − 1)2 + (4 − 1)2 = 3.605551 (3.9)

d(1, 4) =
√

(2 − 3)2 + (3 − 2)2 + (4 − 3)2 = 1.732050 (3.10)

Research Methodology and Proposed Approach 32

d(1, 5) =
√

(2 − 5)2 + (3 − 3)2 + (4 − 4)2 = 3 (3.11)

d(2, 3) =
√

(2 − 2)2 + (1 − 1)2 + (1 − 1)2 = 0 (3.12)

Table 3.6: Sample Dataset After 2nd phase

Instance NO. Features A Features B Features C Label

1 3 2 1 YES

2 3 3 2 YES

3 3 3 3 YES

- - - - -

1 2 3 4 NO

2 2 1 1 NO

3 3 2 3 NO

4 5 3 4 NO

According to the Eq. 3.8, 3.9, 3.10, 3.11 and 3.12, we calculate similarity between

MjC instance. According to the Eq. 3.12, pair d(2,3) output is zero. According

to the Eq. 3.12 MjC have a duplicate instance, so we removed this duplicate in-

stance from MjC and checked IR as we shows in figure 3.2. If we not achieved

the required IR then again find the an other duplicate instance as we shows in

figure 3.2. According to the sample dataset table 3.6 two duplicate instances are

removed from MjC and SUS not achieved the required IR, then we move on 3rd

because no more duplicate instances in dataset as we shows in figure 3.2.

3rd Phase

In third phase, we removes the lest diverse instance from sample dataset table 3.6.

With help of EDF, we compute the similarity distance between all MjC instances

and selects a pair of two instances with least similarity value. When we selects a

Research Methodology and Proposed Approach 33

pair with lest similarity, then we decided from selected pair which insensate is lest

diver. According to sample dataset table 3.6 MjC class have four instances, now

we computes similarity of MjC instances with the help of EDF. According to the

Eq. 3.13, 3.14, 3.15, 3.16, 3.17 and 3.18, all these pairs shows the similarity value

between the MjC instances.

According to Eq. 3.14, pair d(1,3) have least similarity value as compared to

other pairs as we seen in Eq.3.13, 3.15, 3.16, 3.17 and 3.18. Now we computes the

diversity of selected pair d(1,3) with remaining two instances 2 and 4.

d(1, 2) =
√

(2 − 2)2 + (3 − 1)2 + (4 − 1)2 = 3.605551 (3.13)

d(1, 3) =
√

(2 − 3)2 + (3 − 2)2 + (4 − 3)2 = 1.732050 (3.14)

d(1, 4) =
√

(2 − 5)2 + (3 − 3)2 + (4 − 4)2 = 3 (3.15)

d(2, 3) =
√

(2 − 3)2 + (1 − 2)2 + (1 − 3)2 = 2.449489 (3.16)

d(2, 4) =
√

(2 − 5)2 + (1 − 3)2 + (1 − 4)2 = 4.690415 (3.17)

d(3, 4) =
√

(3 − 5)2 + (2 − 3)2 + (3 − 4)2 = 2.449489 (3.18)

According to the figure 3.3, when we selects a pair with least similarity value.

According to the figure 3.3, we checked the least diver instance from selected pair

and we removes the least diver instance from selected pair.

As we seen in Eq. 3.19 and 3.20 we computes the similarity of instance 1 with

other two instances 2 and 4. When we computes the similarity value of instance 1

Research Methodology and Proposed Approach 34

with other two instances then add these similarity values as we shows in Eq. 3.21.

Computes Diversity for Selected Pair d(1,3)

For Instance No. 1

d(1, 2) = W =
√

(2 − 2)2 + (3 − 1)2 + (4 − 1)2 = 3.605551 (3.19)

d(1, 4) = X =
√

(2 − 5)2 + (3 − 3)2 + (4 − 4)2 = 3 (3.20)

A = W + X = 3.605551 + 3 = 6.605551 (3.21)

According to the Eq. 3.22 and Eq. 3.23 we computes the similarity of instance 3

with other two instances 2 and 4. According to the Eq.3.24 we add the similarity

of Eq. 3.22 and 3.23.

For Instance No. 3

d(3, 2) = Y =
√

(3 − 2)2 + (2 − 1)2 + (3 − 1)2 = 2.449489 (3.22)

d(3, 4) = Z =
√

(3 − 5)2 + (2 − 3)2 + (3 − 4)2 = 2.449489 (3.23)

B = Y + Z = 2.449489 + 2.449489 = 4.898978 (3.24)

According to the Eq. 3.21 and 3.24 we have two different diversity value of instance

1 and 3. On the based of Eq. 3.21 and 3.24 values, we decided which one instance

is removes from selected pair. According to the Eq. 3.21 and 3.24 B < A so we

Research Methodology and Proposed Approach 35

removed instance No. 3 from sample dataset table 3.6. We removes the instance

No. 3 because it is less diver, less diver instance is less informative that why we

removes the instance No 3.

According to the figure 3.3 when we repeat the third phase process until we reached

at required IR, When we achieved desired IR then stop SUS process. As we seen in

sample dataset tabel 3.7, MjC and MiC instances have equal number of instance,

so we reached at required IR now we end SUS example.

Table 3.7: Balanced Sample Dataset

Instance NO. Features A Features B Features C Label

1 3 2 1 YES

2 3 3 2 YES

3 3 3 3 YES

- - - - -

1 2 3 4 NO

2 2 1 1 NO

3 5 3 4 NO

In this chapter, we explain our proposed under-sampling approach and discussed

the detailed explication of the proposed SUS approach. With the help of an exam-

ple, we explain the process of under-sampling and show the instances information

in different tables. With the help of different equations, we explain how we com-

pute the distance between the MiC instances and how we compute the diversity

between the selected pair. With the help of the proposed SUS approach, we achieve

effective under-sampling with minimum loss of information as shown in the our

proposed SUS example.

Chapter 4

Experimental Design

In this chapter, we have discussed experimental design for our proposed approach.

We also discuss experimental design phases that are used in the experiment such

as data preprocessing, ML model C4.5, and performance measures that are used

to evaluate and compare our proposed approach with other existing approaches.

First, we discuss under-sampling techniques used in our experiment, ML model

used in our experiment, and performance measures used in our experiment to eval-

uate the performance of the ML model.

Before constructing software defect predictors, we first need to build a learning

model with some datasets and evaluate it based on real-world software defect

datasets. According to that evaluation, the learning model with better perfor-

mance would be taken to build a defect predictor for new datasets. The software

defect datasets used at the first stage are divided into two subsets, a training

dataset for constructing learners and a test dataset for evaluating them. In the

second stage, the software defect prediction model is built using all of the datasets,

which could improve the general performance of the model. According to figure

4.1, our experiment design is divided into four phases. Following are the phases

of experiment design:

1. Data Preprocessing

2. Cross validation

36

Experimental Results 37

3. Evaluation

4. Comparison of Results

Figure 4.1: Experimental Design

4.1 Data Preprocessing

In CIP, class distribution between MjC and MiC instances is the main problem.

For this purpose, many techniques are proposed in literature but these methods

Experimental Results 38

try to address the CIP but these techniques have some issues as we discussed in

the second chapter.

In our experiment, we have used RUS [47], Tomek links [47], and the combination

of RUS and Tomek links and this know as Tomek Random Under-sampling [47].

We compared these three techniques with our proposed approach SUS.

Under-sampling a method is used for data balancing. Under-sampling is using

the MjC instances and removes the MjC samples for data balancing between MjC

and MiC instances. According to the literature RUS randomly eliminates samples

from the MjC until the dataset gets balanced.

For our experiment, we run RUS 50 times across each dataset for the best results.

For performance evaluation, we calculate the average percentage of 50 results of

each dataset. RUS is the most common preprocessing technique used for data

preprocessing.

However, the main drawback of under-sampling is that potentially useful infor-

mation may be lost. In the literature, there are ways attempts to improve upon

the performance of under-samplings, such as Tomek links [47], Condensed Nearest

Neighbor Rule [31], and One-sided selection [32], etc.

Tomek link can be defined as follows: Two data points A and B are Tomek joined

if, A is the nearest neighbor of B, B is the nearest neighbor of A, and A and B

belong to different classes.

Consider the two examples a and b which belong to different classes, and d (a,b) is

the distance between a and b. A(a,b) pair is called a Tomek Link if there is not an

example c, such that d(a,c)¡d(a,b) or d(b,c)¡d(a,b). If two samples form a Tomek

link, then either one of these samples is noise or both samples are border-line and

then we can discard the samples. According to Lemaitre et al. [50] Tomek Link

is used as data cleaning approach in literature.

Tomek Random Under-sampling [47], TL-RUS use both these RUS and Tomek

link techniques for under-sampling. In this technique, the dataset is cleaned with

Tomek link and noise is removed from dataset. TL-RUS perform under-sampling

but information may be lost due to RUS.

Experimental Results 39

4.2 Cross Validation

In this thesis, we use 10 fold cross-validation test for ML model classification on

the PROMISE dataset using the WEKA tool [3]. WEKA tool is a collection

of different machine learning algorithms and it also calculates the ML algorithm

performance using different performance measures such as F-measure, ROC, FP

rate, and TP rate.

First, datasets were download from the PROMISE repository. According to the

literature, these downloaded datasets are used for SDP experiments [3]. At each

round of the cross-validation, the original dataset is partitioned into 10 subsets

in which 9 subsets are used for training learners and the remaining subset is

treated as test data. By doing so, the test data set will not be used in building

the predictors. The independence of the test set from constructing predictors is

crucial for correctly assessing the performances of the predictors.

Software defects datasets are assessed by running them through 10 fold cross-

validation over the decision tree algorithm C4.5 using with WEKA ML tool [53].

Experimental results are reported with two performance measures F-measure and

ROC. WEKA is a free online available tool and according to literature WEKA is

used in many experiments [3]. In our experiment, C4.5 ML algorithm is used for

learning on the SDP dataset. The output of C4.5 with four different undersampling

approaches are compared based on F-measure and ROC.

4.3 C4.5

Quinlan developed the method of decision tree induction in the 1970s and early

1980s [54]. He continued to improve his method, and his work has resulted in the

C4.5 decision tree. In WEKA C4.5 is implemented with the name J48 [53].

The C4.5 algorithm uses a “divide and conquer” strategy to create a tree from a

set of data instances. The algorithm attempts to divide the data into increasingly

smaller partitions. If the dataset suffers from a severe class imbalance, however,

Experimental Results 40

there may not be enough instances for such an approach to be effective. The

learner simply does not have the information it needs to find the appropriate class

boundaries. The problem is worse if we have data fragmentation where the MiC

tends to cluster in different areas of the instance space. The C4.5 algorithm starts

building decision tree with the top node and works downward. At each level of

the tree, it greedily selects the attribute which maximizes the information gain

and splits the dataset on that attribute. It continues recursively, working each

time with smaller partitions of the dataset until it reaches a data partition that

contains mostly instances of a single class at which time it creates a leaf node for

that class. After the algorithm builds the tree, it then attempts to prune it from

the bottom up, either by raising subtrees to higher levels in the decision tree or

by replacing subtrees with leaf nodes. Pruning the decision tree generally reduces

overfitting to the training data.

4.4 Evaluation

Performance measures are very important for classification evaluation. WEKA has

a builtin function to calculate the output of some performance measure such as

F-measure, ROC, TP rate, and FP rate as shown in figure 4.2. In our experiment,

we report the performance of C4.5 with two performance measures F-measure and

ROC. In our experiment, C4.5 ML algorithms are used for learning on the SDP

dataset. The output of C4.5 with four different under-sampling approaches are

compared based on F-measure and ROC.

4.5 Comparison of Results

In our experiments, we report the performance difference between the proposed

under-sampling method SUS with other under-sampling methods as shown in Eq.

4.1 and Eq. 4.2. We calculate the performance difference of F-measure and ROC

Experimental Results 41

as shown in Eq. 4.1 and Eq. 4.2, Diff(F-measures) represents the difference in

F-measure and diff(ROC) represent the difference in ROC.

Diff(F −measures) = SUS(F −measureV alue) −RUS(F −measureV alue)

(4.1)

Diff(ROC) = SUS(ROCV alue) −RUS(ROCV alue) (4.2)

4.6 WEKA

WEKA is a free online available tool and according to literature WEKA is used

in many experiments [3]. In WEKA, different machine learning models are cat-

egorized into 9 different groups [53]. The name of these 9 groups of ML models

are Bayes, Functions, Lazy, Pyscript, Meta, Misc, Rules, Sklearn, and trees as

shown in figure 4.2. In the tree group, we highlight the J48, in WEKA C4.5 is

implemented with the name J48 [53] model and in the bottom of the result box,

we can see the results of different performance measure such ROC and F-measure.

Figure 4.2: WEKA UI

Experimental Results 42

4.7 Dataset

Table 4.1: Dataset Detail

No. Dataset

Name

MiC MjC MiC

+

MjC

Features Classes IR

1 velocity-1.6-

CK

78 151 229 8 2 1.93

2 synapse-1.2-

CK

86 170 256 8 2 1.97

3 jedit-3.2-CK 89 182 271 8 2 2

4 synapse-1-CK 60 162 222 8 2 2.7

5 jedit-4.1-CK 79 233 312 8 2 2.94

6 jedit-4.0-CK 75 231 306 8 2 3.08

7 Eclipse-JDT-

Core-CK

206 791 997 8 2 3.83

8 xerces-1.2-

CK

71 369 440 8 2 5.19

9 xerces-1.3-

CK

69 384 453 8 2 5.56

10 Camel-1.6-

CK

129 777 906 8 2 6.02

11 Eclipse-PDE-

UI-CK

209 1288 1497 8 2 6.16

12 Camel-1.4-

CK

115 727 842 8 2 6.32

13 Camel-1.0-

CK

50 323 373 8 2 6.46

14 Mylyn-CK 245 1617 1862 8 2 6.6

15 Lucene-CK 64 627 691 8 2 9.79

Experimental Results 43

In our experiments, we selected 15 datasets out of 27 from PROMISE repository,

and these datasets were used in previous literature [3]. For our experiments, we

select 15 datasets and in all 15 datasets, the number of MiC instances is > 50. We

do not select those datasets which have the MiC < 50. Table 4.1 shows the detail

of 15 datasets, this table also shows the number of MiC and MjC instances and

the total number of instances, number of features, number of classes, and IR.

We have divided selected 15 datasets into two groups based on IR value. First 7

datasets are in 1st group and 8 to 15 datasets are in 2nd group as shown in table

4.1. In 1st group all datasets have IR < 5 and in 2nd group all datasets have IR >

5, IR in 2nd group datasets is between 5.19 and 9.79. All 15 datasets have same

7 features, in table 4.2 we have listed the number of features and also shown all

feature abbreviations.

Table 4.2: Shows the Features of Dataset

Name Description

WMC Weighted methods per class

DIT Depth of inheritance tree

RFC Response for a class

NOC Number of children

CBO Coupling between object classes

LCOM Lack of cohesion of methods

LOC Line of code

In this chapter, we explain the experimental setup, and we also discuss how we

evaluate the proposed approach with other approaches. In this chapter, we discuss

the process of cross-validation and also the GUI of WEKA. In this chapter, we

show the datasets in detail and also discuss the process of comparison of results.

Chapter 5

Results and Discussion

In this chapter, we discuss the experiment results and evaluate performance of

the SUS. We compare the proposed method SUS with Tomek Links, Random

under-sampling, and Tomke Random under-sampling.

These previous techniques were implemented in Python and the toolbox is publicly

available at GitHub [50]. We compare the proposed method SUS with under-

sampling techniques via using IR 1:1.

For better evaluation, we run RUS 50 times across each dataset and compare the

average of 50 runs with SUS. We have evaluated each dataset by using F-measure

and ROC. As for the classification, we used C4.5, each of the experiments is done

with 10 fold cross-validation. The RUS experiments were repeated 50 times to

produce statistically reliable results.

The performance of the classifiers is compared by using the ROC and F-measure.

In the literature, ROC and F-measure are commonly used as performance measures

in the SDP field, and C4.5 is also commonly used in the SDP field.

In SDP studies different ML models are used for classification, according to the

Malhotra study, C4.5 is frequently used for SDP [4]. C4.5 gives good results on

imbalanced datasets in SDP field [13] [4]. Performance measures F-measure and

ROC generally used for SDP [4] [2].

44

Conclusion 45

5.1 Experiment

In this section, we discuss the performance of under-sampling techniques with

imbalance datasets and compare the results with our proposed technique called

Structured Under-Sampling (SUS). We also try to find out how IR affects the final

result, which is discussed in more detail in the following subsections.

In our experiments, we report the performance difference between the proposed

under-sampling method SUS and other under-ampling methods. The performance

measure diff(F-measures) represents the difference in F-measure and diff(ROC)

represent the difference in ROC.

For better evaluation of 15 datasets, we split them into two groups according to

IR. All datasets have different IR as shown in table 4.1, so we divide these datasets

into two groups. In the first group, all datasets have IR<5 and in the second group,

all datasets have IR>5. These two groups help to understand the performance of

SUS with other existing under-sampling methods. We also see the impact of IR

on the sampling technique and get the best analysis.

5.1.1 SUS vs. Tomek link

In this experiment, we compare the performance of SUS and Tomek link on 15

datasets. The results of this experiment are analyzed according to the IR value.

Table 5.1 represents diff(F-measure) and diff(ROC) on 7 datasets with imbalance

ratio is less than 5 (IR < 5).

Table 5.2 represents diff(F-measure) and diff(ROC) on 8 datasets with imbalance

ratio is greater than 5 (IR > 5). Table 5.1 shows negative results in bold face.

These results show SUS performance is not improved, in table 5.1 the first group

SUS overall performance is better than Tomek link, while all the positive values

of diff(F-measure) and diff(ROC) show better performance from Tomek link. If

we analyze diff(F-measure), it shows better performance from SUS on 4 datasets

out of 7 as compared to T-links which performs better on 3 datasets out of 7.

Conclusion 46

Table 5.1: Performance difference of SUS and Tomek link when IR < 5

Dataset Name

SUS vs. Tomek Link

1st Group (IR <5)

C4.5

SUS-(F-

measure)

T-Links-(F-

measure)

Diff-(F-

measure)

SUS-

(ROC)

T-Links-

(ROC)

Diff-

(ROC)

velocity-1.6-CK 0.55 No Output 0.55 0.56 0.481 0.079

synapse-1.2-CK 0.546 0.554 -0.008 0.54 0.504 0.04

jedit-3.2-CK 0.683 0.508 0.175 0.69 0.506 0.186

synapse-1.1-CK 0.542 0.587 -0.045 0.56 0.489 0.069

jedit-4.1-CK 0.624 No Output 0.624 0.62 0.494 0.127

jedit-4.0-CK 0.595 No Output 0.595 0.65 0.478 0.168

Eclipse-JDT-

Core-CK

0.648 0.685 -0.037 0.69 0.497 0.19

Figure 5.1: SUS and Tomek link Performance

Conclusion 47

Table 5.2: Performance difference of SUS and Tomek Link when IR > 5

Dataset Name

SUS vs. Tomek Link

2nd Group (IR > 5)

C4.5

SUS-(F-

measure)

T-Links-(F-

measure)

Diff-(F-

measure)

SUS-

(ROC)

T-Links-

(ROC)

Diff-

(ROC)

xerces-1.2-CK 0.85 No Output 0.85 0.791 0.491 0.3

xerces-1.3-CK 0.703 No Output 0.703 0.731 0.491 0.24

Camel-1.6-CK 0.661 No Output 0.661 0.637 0.495 0.142

Eclipse-PDE-

UI-CK

0.61 No Output 0.61 0.648 0.497 0.151

Camel-1.4-CK 0.637 No Output 0.637 0.65 0.488 0.162

Camel-1.0-CK 0.83 No Output 0.83 0.842 0.499 0.343

Mylyn-CK 0.687 No Output 0.687 0.733 0.494 0.239

Lucene-CK 0.662 No Output 0.662 0.737 0.48 0.257

Figure 5.2: Overall Performance difference between SUS and Tomek link

Conclusion 48

So we can conclude from diff(F-measure) SUS has performed better than Tomek

link. On the other hand, when we talk about performance measure ROC, SUS

with diff(ROC) outperforms Tomek link on all 7 datasets.

In Table 5.2 SUS has again outperformed Tomek link with all positive values of

diff(ROC) and diff(F-measure). In table 5.2, SUS performance further improves

for SDP when IR is greater than 5.

Figure 5.2 shows the performance difference between SUS and T-links, According

to figure 5.2 SUS has outperformed Tomek link on all 15 datasets with diff(ROC)

and on 12 out of 15 datasets with diff(F-measure). According to figure 5.1 and 5.2,

we conclude that SUS is a good under-sampling technique in the scenario when

IR is greater than 5.

5.1.2 SUS vs. RUS

In the 2nd experiment, we compare the performance of SUS and RUS. According

to table 5.3, 5.4 and figure 5.3 and 5.4, we can see the three different behaviors

of SUS. Table 5.3 and 5.4, show that the performance of SUS changes when IR

changes. In table 5.3, the number of negative values is greater than the number of

positive values with both performance measures diff(ROC) and diff(F-measure),

which means that the performance of RUS is better than SUS when IR < 5. RUS

performs better on 5 datasets out of 7, only one dataset shows equal performance

for SUS and RUS which is jedit-3.2. In Table 5.4, we can see that both perfor-

mance measures diff(ROC) and diff(F-measure) have shown SUS outperforms RUS

on all datasets. Positive values represent better performance of SUS as compare

to RUS on all datasets of the 2nd group. Only one dataset has not shown any

improvement in the performance of SUS which is Camel-1.4-CK.

Figure 5.3 shows the overall performance of SUS and RUS. Figure 5.4 shows the

performance difference of SUS and RUS. According to figure 5.4, SUS has outper-

formed RUS on all 15 datasets with diff(ROC) and on 9 out of 15 datasets with

diff(F-measure). According to these findings, we conclude that SUS is a good

under-sampling technique in the scenario when IR > 5.

Conclusion 49

Table 5.3: Performance difference of SUS and RUS when IR < 5

Dataset Name

SUS vs. RUS

1st Group (IR <5)

C4.5

SUS-(F-

measure)

RUS-(F-

measure)

Diff-(F-

measure)

SUS-

(ROC)

RUS-

(ROC)

Diff-

(ROC)

velocity-1.6-CK 0.55 0.54 0.01 0.56 0.55 0.01

synapse-1.2-CK 0.546 0.695 -0.149 0.544 0.691 -0.147

jedit-3.2-CK 0.683 0.681 0.002 0.692 0.688 0.004

synapse-1.1-CK 0.542 0.675 -0.113 0.558 0.671 -0.113

jedit-4.1-CK 0.624 0.701 -0.077 0.621 0.708 -0.087

jedit-4.0-CK 0.595 0.706 -0.111 0.646 0.71 -0.064

Eclipse-JDT-

Core-CK

0.648 0.693 -0.045 0.687 0.701 -0.014

Figure 5.3: Overall Performance difference between SUS and RUS

Conclusion 50

Table 5.4: Performance difference of SUS and RUS when IR > 5

Dataset Name

SUS vs. RUS

2nd Group (IR >5)

C4.5

SUS (F-

measure)

RUS (F-

measure)

Diff (F-

measure)

SUS

(ROC)

RUS

(ROC)

Diff

(ROC)

xerces-1.2-CK 0.85 0.687 0.163 0.791 0.69 0.101

xerces-1.3-CK 0.703 0.688 0.015 0.731 0.7 0.031

Camel-1.6-CK 0.661 0.608 0.053 0.637 0.627 0.01

Eclipse-PDE-

UI-CK

0.61 0.6 0.01 0.648 0.631 0.017

Camel-1.4-CK 0.637 0.637 0 0.65 0.63 0.02

Camel-1.0-CK 0.83 0.82 0.01 0.842 0.824 0.018

Mylyn-CK 0.687 0.634 0.053 0.733 0.646 0.087

Lucene-CK 0.662 0.572 0.09 0.737 0.572 0.165

Figure 5.4: Overall Performance difference between SUS and RUS

Conclusion 51

5.1.3 SUS vs. TL-RUS

In this third experiment, we compare the performance of SUS and TL-RUS. TL-

RUS is a combination RUS and Tomek links. Tomek links is used as a data cleaning

method and RUS is used for the under-sampling of the MjC. Tomek links is a data

cleaning method, cleaning under-sampling does not allow to reach a specific IR

[50]. Elhassan results show performance improved when applying Tomek links

used as a data cleaning method before the different sampling techniques [47].

According to the results of table 5.5, 5.6 and figure 5.5, 5.6, SUS shows outstanding

performance and SUS outperforming TL-RUS in both groups.

Figure 5.6 shows the performance difference between SUS and TL-RUS. According

to figure 5.6, SUS has outperformed on all 15 datasets with diff(ROC) and on 15

out of 15 datasets with diff(F-measure).

Figure 5.5: Overall Performance SUS and TL-RUS

Conclusion 52

Table 5.5: performance difference between SUS and TL-RUS when IR < 5

Dataset Name

SUS vs. TL-RUS

1st Group (IR <5)

C4.5

SUS-(F-

measure)

TL-RUS-(F-

measure)

Diff-(F-

measure)

SUS-

(ROC)

TL-RUS-

(ROC)

Diff-

(ROC)

velocity-1.6-CK 0.55 0.466 0.084 0.56 0.462 0.098

synapse-1.2-CK 0.546 0.499 0.047 0.544 0.532 0.012

jedit-3.2-CK 0.683 0.506 0.177 0.692 0.504 0.188

synapse-1.1-CK 0.542 0.419 0.123 0.558 0.469 0.089

jedit-4.1-CK 0.624 0.418 0.206 0.621 0.429 0.192

jedit-4.0-CK 0.595 0.403 0.192 0.646 0.471 0.175

Eclipse-JDT-

Core-CK

0.648 0.485 0.163 0.687 0.49 0.197

Figure 5.6: Overall Performance difference between SUS and TL-RUS

Conclusion 53

Table 5.6: Performance Difference between SUS and TL-RUS when IR > 5

Dataset Name

SUS vs. TL-RUS

2nd Group (IR >5)

C4.5

SUS-(F-

measure)

TL-RUS-(F-

measure)

Diff-(F-

measure)

SUS-

(ROC)

TL-RUS-

(ROC)

Diff-

(ROC)

xerces-1.2-CK 0.85 0.487 0.363 0.791 0.502 0.289

xerces-1.3-CK 0.703 0.477 0.226 0.731 0.447 0.284

Camel-1.6-CK 0.661 0.528 0.133 0.637 0.554 0.083

Eclipse-PDE-

UI-CK

0.61 0.401 0.209 0.648 0.496 0.152

Camel-1.4-CK 0.637 0.452 0.185 0.65 0.459 0.191

Camel-1.0-CK 0.83 0.389 0.441 0.842 0.436 0.406

Mylyn-CK 0.687 0.454 0.233 0.733 0.461 0.272

Lucene-CK 0.662 0.445 0.217 0.737 0.419 0.318

5.2 Discussion

Imbalance data has a significant impact on the performance of standard classifi-

cation algorithms. Applying the standard classification algorithms without any

adjustment results in a classification biased towards the majority class.

For this Issue, we recommend the use of SUS as a under-sampling method. Our

experiments results shows better performance of SUS as compare to other existing

under-sampling methods. SUS removes three different types of instances from MjC

with help of EDF. The proposed method, SUS overcome the problem of informa-

tion lost as compared to RUS to reach the specific IR loses minimum information

which therefore improves the performance of the classification algorithm.

The results of this investigation show a superior performance of SUS as compared

to previous sampling techniques. Software defect datasets show the superiority of

method SUS with ML algorithms C4.5. Some datasets showed a comparable per-

formance using sampling methods. Figure 5.7 and 5.8 show experiment results on

15 datasets and show the performance difference using the performance measures

diff(ROC) and diff(F-measure) with three under-sampling methods.

Conclusion 54

Figure 5.7: Overall Performance difference of SUS between Tomek-Link, RUS
and TL-RUS

Figure 5.7 and 5.8 show experiment results on 15 datasets and show the perfor-

mance difference using the performance measures diff(ROC) and diff(F-measure)

with three under-sampling methods.

In figure 5.7 and 5.8 blue line shows the performance difference of SUS and Tomek

link with performance measures diff(ROC) and diff(F-measure) respectively. Ac-

cording to 5.7 the blue line shows the positive results in all 15 datasets. In figure

5.7 the blue line shows SUS outperformed as compared to the Tomek links us-

ing performance measure ROC. But in the figure 5.8 SUS shows a little different

results as compared to figure 5.7. Figure 5.8 shows the performance difference

between SUS and Tomek link with the blue line and this blue line is below zero in

three datasets. According to the figure 5.8, we can see that performance of SUS

Conclusion 55

is not improved in 3 datasets out of 15 datasets. But when we analyze the overall

performance difference between SUS and Tomek link we see the overall SUS is

outperforms with 15 datasets.

Figure 5.8: Performance difference of SUS between Tomek-Link, RUS and
TL-RUS

In figure 5.7 and 5.8, red line shows the performance difference of SUS and RUS

with performance measures diff(ROC) and diff(F-measure) respectively. According

to 5.7 the red line shows positive results in 11 datasets and shows negative results

on 5 datasets. According to the figure 5.7 and 5.8 we see that performance of SUS

is not improved when IR is < 5. So, the performance difference in figure 5.7 and

5.8, shows overall SUS outperformed with both performance measures diff(ROC)

and diff(F-measure) on 11 datasets out of 15 datasets.

In figure 5.7 and 5.8, green line shows the performance difference of SUS and

Conclusion 56

TL-RUS with performance measures diff(ROC) and diff(F-mesaure) respectively.

According to figure 5.7 and 5.8 the green line shows positive results in all 15.

According to these figure 5.7 and 5.8 SUS outperformed on 15 datasets with both

performance measures diff(ROC) and diff(F-measure).

Figure 5.7 and 5.8, show the overall performance difference diff(ROC) and diff(F-

measure) respectively. In both figures 5.7 and 5.8 the performance of SUS is not

improved when IR is less than 5 (IR < 5) but on the other hand when IR > 5 the

performance of SUS is improved and SUS is outperformed on all datasets which

have IR > 5.

In this chapter, we explain the results of our proposed approach SUS with existing

under-sampling approaches. With help of different tables, we show the output

of different results and with help of different figures, we show the performance

difference of the proposed approach with other existing approaches. The overall

performance of the proposed approach SUS is better as compared to other existing

approaches.

Chapter 6

Conclusion and Future Work

In this chapter, we make some final comments about our new under-sampling tech-

nique. In chapter 5, we discussed comparison of the proposed SUS results with

other previous under-sampling techniques results. In this thesis, we have intro-

duced a new approach that involves under-sampling of MjC in a systematic way.

We compared our SUS approach with RUS, Tomek Links, and the combination

of RUS and Tomek Links. The comparison results described in chapter 5 reveal

that our under-sampling approach is generally better and outperforms the other

under-sampling techniques. While RUS and Tomek Links techniques do perform

well on some datasets when IR < 5, SUS shows far better results when we speak

about the overall result.

RQ1: How can we achieve an effective under-sampling with minimum

loss of information as compared to the other existing under-sampling

approaches?

In the chapter 2.2, we discuss many under-sampling techniques and all these tech-

niques used the EDF to remove the noisy instances for MiC and in literature these

techniques are also known as data reduction methods. In some methods, when

removing an instance its must be present in both classes then we remove this in-

stance from the majority class. Some methods use nearest neighbors for removing

57

Conclusion and Future Work 58

instances but the decision of which data point is selected for data reduction is

based on both classes MiC and MjC.

In the proposed technique, the structured under-sampling (SUS) we systematically

remove instances. In chapter 3, we discuss SUS has three phases to remove the

samples from MjC and reduce the size of MjC in a structured way.

In the first phase, we identify inconsistent samples, and remove them from MjC. In

the second phase, we identify and remove the same sample or duplicate instances

with the same label. The third phase, removes the most similar instances in the

MjC class. This phase has to achieve the desired IR.

In section 5.2, experiments show that SUS overall outperformed other sampling

techniques. In some datasets when IR < 5 the performance of SUS is affected but

when IR > 5 performance improves.

RQ2: Does the proposed under-sampling approach improve the perfor-

mance over existing under-sampling approaches?

We compare the proposed method SUS with Tomek Links, Random under-sampling,

and Tomke Random under-sampling. These previous techniques were implemented

in Python and the toolbox is publicly available at GitHub [50]. We also compare

the proposed method SUS with under-sampling techniques using IR 1:1. We have

validated each dataset by using F-measure and ROC. As for the classification, we

used C4.5, each experiment is done 10 cross folds validation.

Figure 5.2 shows the performance difference between SUS and T-links, According

to figure 5.2 SUS has outperformed on all 15 datasets with diff(ROC) and on 12

out of 15 datasets with diff(F-measure). According to these findings, we conclude

that SUS is a good sampling technique in the scenario when IR greater than 5.

Figure 5.4 shows the performance difference between SUS and RUS, According to

figure 5.4 SUS has outperformed on all 15 datasets with diff(ROC) and on 9 out

of 15 datasets with diff(F-measure). According to these findings, we conclude that

SUS is a good resampling technique in the scenario when IR > 5.

In figure 5.6 shows the performance difference between SUS and TL-RUS, Accord-

ing to figure 5.6 SUS has outperformed on all 15 datasets with diff(ROC) and on

Conclusion and Future Work 59

15 out of 15 datasets with diff(F-measure).

The results of this investigation show a superior performance using SUS to the

prior resampling techniques. Software defect datasets showed the superiority of

method SUS after using ML algorithms C4.5. Some datasets showed a comparable

performance using all sampling methods

RQ3: How does imbalance ratio affect the performance of proposed

under-sampling approaches?

IR is defined as the fraction of the number of non-defective (MjC) samples in the

number of defective (MiC) samples as shown in Eq.1.1. The effect of IR is clearly

seen in table 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6, the performance of SUS changes when

IR changes. In tables 5.2, 5.6 and 5.4, when IR is greater than 5 (IR > 5) SUS

outperforms in all experiments. We can say that, SUS performs well when IR is

greater than 5.

Figure 5.7 and 5.8 show the overall all performance difference diff(ROC) and diff(F-

measure) respectively. In both figures 5.7 and 5.8 the performance of SUS is not

improving when IR is less than 5 (IR < 5) but on the other hand when IR > 5

the performance of SUS is improved 5.

For future work, we can combine SUS with other sampling approaches in the

domain of SDP. Many authors combine under-sampling with over-sampling tech-

niques. The over-sampling approach increases the size of MiC with random se-

lection or with the adaptive approach. In the literature, different over-sampling

techniques have been proposed such as SMOTE, MSMOTE, Borderline-SMOTE,

and ADASYN. For future work, we combine our proposed technique SUS with

other over-sampling and investigate the behavior of SUS. With the help of SUS,

we reduced the size of MjC with specific IR. When we have done under-sampling

with our proposed technique then use other over-sampling techniques and increases

the size of MiC. With the help of under-oversampling we achieve desired IR.

In the conclusion of future work, we find the best combination of SUS with

other over-sampling techniques. For future experiments, we use 27 datasets from

Conclusion and Future Work 60

PROMISE repository. We also compare the proposed method SUS with over-

sampling techniques using IR 1:1. For better evaluation, we run Random over-

sampling 50 times across each dataset and compare the average of 50 runs with

SUS. As for the classification, we used C4.5, the performance of the classifier is

compared by using the ROC and F-measure.

Bibliography

[1] S. Wang and X. Yao, “Using class imbalance learning for software defect

prediction,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–443,

2013.

[2] M. Rizwan, A. Nadeem, and M. A. Sindhu, “Analyses of classifier’s per-

formance measures used in software fault prediction studies,” IEEE Access,

vol. 7, pp. 82 764–82 775, 2019.

[3] Q. Song, Y. Guo, and M. Shepperd, “A comprehensive investigation of the

role of imbalanced learning for software defect prediction,” IEEE Transactions

on Software Engineering, vol. 45, no. 12, pp. 1253–1269, 2018.

[4] R. Malhotra, “A systematic review of machine learning techniques for software

fault prediction,” Applied Soft Computing, vol. 27, pp. 504–518, 2015.

[5] A. Smola and S. Vishwanathan, “Introduction to machine learning,” Cam-

bridge University, UK, vol. 32, no. 34, p. 2008, 2008.

[6] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: recovering links be-

tween bugs and changes,” in Proceedings of the 19th ACM SIGSOFT sympo-

sium and the 13th European conference on Foundations of software engineer-

ing, 2011, pp. 15–25.

[7] Q. Kang, X. Chen, S. Li, and M. Zhou, “A noise-filtered under-sampling

scheme for imbalanced classification,” IEEE transactions on cybernetics,

vol. 47, no. 12, pp. 4263–4274, 2016.

61

Bibliography 62

[8] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code at-

tributes to learn defect predictors,” IEEE transactions on software engineer-

ing, vol. 33, no. 1, pp. 2–13, 2006.

[9] J. Nam, “Survey on software defect prediction,” Department of Compter Sci-

ence and Engineerning, The Hong Kong University of Science and Technol-

ogy, Tech. Rep, 2014.

[10] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction ap-

proaches: a benchmark and an extensive comparison,” Empirical Software

Engineering, vol. 17, no. 4, pp. 531–577, 2012.

[11] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan, “High-impact

defects: a study of breakage and surprise defects,” in Proceedings of the 19th

ACM SIGSOFT symposium and the 13th European conference on Founda-

tions of software engineering, 2011, pp. 300–310.

[12] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro interaction metrics for

defect prediction,” in Proceedings of the 19th ACM SIGSOFT symposium and

the 13th European conference on Foundations of software engineering, 2011,

pp. 311–321.

[13] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the efficiency

of change metrics and static code attributes for defect prediction,” in Pro-

ceedings of the 30th international conference on Software engineering, 2008,

pp. 181–190.

[14] N. Nagappan and T. Ball, “Use of relative code churn measures to predict

system defect density,” in Proceedings of the 27th international conference on

Software engineering, 2005, pp. 284–292.

[15] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,” ACM

SIGSOFT Software Engineering Notes, vol. 29, no. 4, pp. 86–96, 2004.

Bibliography 63

[16] V. Y. Shen, S. D. Conte, and H. E. Dunsmore, “Software science revisited: A

critical analysis of the theory and its empirical support,” IEEE Transactions

on Software Engineering, no. 2, pp. 155–165, 1983.

[17] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating complexity,

code churn, and developer activity metrics as indicators of software vulnerabil-

ities,” IEEE transactions on software engineering, vol. 37, no. 6, pp. 772–787,

2010.

[18] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,”

in Third International Workshop on Predictor Models in Software Engineering

(PROMISE’07: ICSE Workshops 2007). IEEE, 2007, pp. 9–9.

[19] A. Tosun, B. Turhan, and A. Bener, “Validation of network measures as

indicators of defective modules in software systems,” in Proceedings of the 5th

international conference on predictor models in software engineering, 2009,

pp. 1–9.

[20] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algo-

rithms,” Machine learning, vol. 6, no. 1, pp. 37–66, 1991.

[21] W. W. Cohen, “Fast effective rule induction,” in Machine learning proceedings

1995. Elsevier, 1995, pp. 115–123.

[22] R. Premraj and K. Herzig, “Network versus code metrics to predict defects:

A replication study,” in 2011 International Symposium on Empirical Software

Engineering and Measurement. IEEE, 2011, pp. 215–224.

[23] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classifica-

tion models for software defect prediction: A proposed framework and novel

findings,” IEEE Transactions on Software Engineering, vol. 34, no. 4, pp.

485–496, 2008.

[24] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the” imprecision” of

cross-project defect prediction,” in Proceedings of the ACM SIGSOFT 20th

Bibliography 64

International Symposium on the Foundations of Software Engineering, 2012,

pp. 1–11.

[25] B. Krawczyk, “Learning from imbalanced data: open challenges and future

directions,” Progress in Artificial Intelligence, vol. 5, no. 4, pp. 221–232, 2016.

[26] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems with

precision: A response to” comments on’data mining static code attributes

to learn defect predictors’”,” IEEE Transactions on Software Engineering,

vol. 33, no. 9, pp. 637–640, 2007.

[27] X. Xuan, D. Lo, X. Xia, and Y. Tian, “Evaluating defect prediction ap-

proaches using a massive set of metrics: An empirical study,” in Proceedings

of the 30th Annual ACM Symposium on Applied Computing, 2015, pp. 1644–

1647.

[28] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect predic-

tion,” in 2011 33rd International Conference on Software Engineering (ICSE).

IEEE, 2011, pp. 481–490.

[29] C.-S. Lin, G.-H. Tzeng, and Y.-C. Chin, “Combined rough set theory and

flow network graph to predict customer churn in credit card accounts,” Expert

Systems with Applications, vol. 38, no. 1, pp. 8–15, 2011.

[30] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transac-

tions on knowledge and data engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[31] P. Hart, “The condensed nearest neighbor rule (corresp.),” IEEE transactions

on information theory, vol. 14, no. 3, pp. 515–516, 1968.

[32] M. Kubat, S. Matwin et al., “Addressing the curse of imbalanced training

sets: one-sided selection,” in Icml, vol. 97. Citeseer, 1997, pp. 179–186.

[33] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm

for discovering clusters in large spatial databases with noise.” in Kdd, vol. 96,

no. 34, 1996, pp. 226–231.

Bibliography 65

[34] I. Mani and I. Zhang, “knn approach to unbalanced data distributions: a

case study involving information extraction,” in Proceedings of workshop on

learning from imbalanced datasets, vol. 126, 2003.

[35] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

synthetic minority over-sampling technique,” Journal of artificial intelligence

research, vol. 16, pp. 321–357, 2002.

[36] S. Hu, Y. Liang, L. Ma, and Y. He, “Msmote: Improving classification per-

formance when training data is imbalanced,” in 2009 second international

workshop on computer science and engineering, vol. 2. IEEE, 2009, pp.

13–17.

[37] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new over-

sampling method in imbalanced data sets learning,” in International con-

ference on intelligent computing. Springer, 2005, pp. 878–887.

[38] J. Laurikkala, “Improving identification of difficult small classes by balancing

class distribution,” in Conference on Artificial Intelligence in Medicine in

Europe. Springer, 2001, pp. 63–66.

[39] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-

imbalance learning,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), vol. 39, no. 2, pp. 539–550, 2008.

[40] S.-J. Yen and Y.-S. Lee, “Cluster-based under-sampling approaches for im-

balanced data distributions,” Expert Systems with Applications, vol. 36, no. 3,

pp. 5718–5727, 2009.

[41] M. A. Tahir, J. Kittler, and F. Yan, “Inverse random under sampling for class

imbalance problem and its application to multi-label classification,” Pattern

Recognition, vol. 45, no. 10, pp. 3738–3750, 2012.

[42] W. W. Ng, J. Hu, D. S. Yeung, S. Yin, and F. Roli, “Diversified sensitivity-

based undersampling for imbalance classification problems,” IEEE transac-

tions on cybernetics, vol. 45, no. 11, pp. 2402–2412, 2014.

Bibliography 66

[43] M. Beckmann, N. F. Ebecken, B. S. P. de Lima et al., “A knn undersampling

approach for data balancing,” Journal of Intelligent Learning Systems and

Applications, vol. 7, no. 04, p. 104, 2015.

[44] W. Liu, S. Liu, Q. Gu, J. Chen, X. Chen, and D. Chen, “Empirical studies of

a two-stage data preprocessing approach for software fault prediction,” IEEE

Transactions on Reliability, vol. 65, no. 1, pp. 38–53, 2015.

[45] C. Yang, Y. Gao, J. Xiang, and L. Liang, “Software defect prediction based on

conditional random field in imbalance distribution,” in 2015 2nd International

Symposium on Dependable Computing and Internet of Things (DCIT). IEEE,

2015, pp. 67–71.

[46] X. Chen, Q. Kang, M. Zhou, and Z. Wei, “A novel under-sampling algo-

rithm based on iterative-partitioning filters for imbalanced classification,” in

2016 IEEE International Conference on Automation Science and Engineering

(CASE). IEEE, 2016, pp. 490–494.

[47] T. Elhassan and M. Aljurf, “Classification of imbalance data using tomek

link (t-link) combined with random under-sampling (rus) as a data reduction

method,” 2016.

[48] R. A. Sowah, M. A. Agebure, G. A. Mills, K. M. Koumadi, and S. Y. Fiawoo,

“New cluster undersampling technique for class imbalance learning,” Inter-

national Journal of Machine Learning and Computing, vol. 6, no. 3, p. 205,

2016.

[49] I. Tomek et al., “An experiment with the edited nearest-nieghbor rule.” 1976.

[50] G. Lemâıtre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python

toolbox to tackle the curse of imbalanced datasets in machine learning,” The

Journal of Machine Learning Research, vol. 18, no. 1, pp. 559–563, 2017.

[51] P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics and im-

age processing, vol. 14, no. 3, pp. 227–248, 1980.

Bibliography 67

[52] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some comments

on the nasa software defect datasets,” IEEE Transactions on Software Engi-

neering, vol. 39, no. 9, pp. 1208–1215, 2013.

[53] R. R. Bouckaert, E. Frank, M. Hall, R. Kirkby, P. Reutemann, A. Seewald,

and D. Scuse, “Weka manual for version 3-9-1,” University of Waikato, Hamil-

ton, New Zealand, 2016.

[54] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1,

pp. 81–106, 1986.

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Software Defect Prediction
	1.2 Class Imbalance Problem
	1.3 Sampling Approaches for CIP
	1.3.1 Under-Sampling Approach
	1.3.2 Over-Sampling Approach

	1.4 Problem Statement
	1.5 Objective and Research Questions
	1.6 Outline of Thesis

	2 Literature Review
	2.1 Under-Sampling Technique
	2.2 Distance Function Based Data Reduction Method
	2.3 Euclidean Distance Function
	2.4 Summary

	3 Proposed Approach
	3.1 Structured Under-sampling (SUS)
	3.2 Euclidean Distance Function
	3.3 Example

	4 Experimental Design
	4.1 Data Preprocessing
	4.2 Cross Validation
	4.3 C4.5
	4.4 Evaluation
	4.5 Comparison of Results
	4.6 WEKA
	4.7 Dataset

	5 Results and Discussion
	5.1 Experiment
	5.1.1 SUS vs. Tomek link
	5.1.2 SUS vs. RUS
	5.1.3 SUS vs. TL-RUS

	5.2 Discussion

	6 Conclusion and Future Work
	Bibliography

